

A Different Approach on A Pythagorean Triangle which Satisfies

$$p(Hypotonuse) - 4p \frac{(Area)}{(Perimeter)} = \beta^2$$

S. Sriram, P. Veeramallan

¹P. G. & Research Department of Mathematics, National College, Tiruchirappalli, Tamilnadu, India ²P. G. Assistant in Mathematics, GHSS, Perumangalam, Villupuram, Tamilnadu, India

ABSTRACT

We obtain non-trivial values for the sides of the Pythagorean triangle such that $p(Hypotonuse) - 4p \frac{(Area)}{(Perimeter)} = \beta^2$. A few interesting relations between the sides of the Pythagorean triangle are presented.

Keywords: Integral Solutions, Pythagorean Triangles

I. INTRODUCTION

One well known set of solutions of the Pythagorean equation $x^2 + y^2 = z^2$ are x = $2uv, y = u^2 - v^2$ and $z = u^2 + v^2$. Many mathematicians has been used this set of solutions to obtain the non-zero integral values for x, y and z [1-3]. As a new approach, in this paper we introduce another set of solutions x = 2U + U1, $y = 2U^2 + 2U$ and $z = 2U^2 + 2U + 1$ for the equation $x^2 + y^2 = z^2$. By using this solution we obtain three non-zero integers x,y and z under certain relations satisfying the equation x^2 + $y^2 = z^2$ [4-6]. In this communication, we present yet another interesting Pythagorean triangle where in each of which the ratio p(Hypotonuse) - $4p \frac{(Area)}{(Perimeter)}$ may be expressed as a perfect square.

II. METHODS AND MATERIAL

Taking A > 0 to be the generators of the Pythagorean triangle (x, y, z), the assumption that $p(Hypotonuse) - 4p \frac{(Area)}{(Perimeter)} = \beta^2$ leads to the

Pellian equation $Y^2 = DX^2 + p$ where D = 2p, not a perfect square and U = X.

For the clear understanding we consider the following two cases:

i)
$$p = 9$$
 (odd number) so that $D = 18$

ii) p = 12 (even number) so that D = 24

Case (i):

When p = 9 the equation

$$Y^2 = DX^2 + p \tag{1}$$

Becomes

$$Y^2 = 18X^2 + 9 (2)$$

Let $(x_0, y_0) = (12,51)$ be the initial solution of (2).

Consider the Pellian

$$Y^2 = 18X^2 + 1 \tag{3}$$

Let $(\widetilde{x_0}, \widetilde{y_0}) = (4, 17)$ be a solution of (3)

Using Brahmagupta lemma the general solution $(\widetilde{x_n}, \widetilde{y_n})$ of equation (3) is given by

$$\widetilde{y_n} + \sqrt{18}\widetilde{x_n} = (17 + 4\sqrt{18})^{n+1}$$
 (4)

Where n = 0, 1, 2, 3...

Since irrational roots occur in pairs

$$\widetilde{y_n} - \sqrt{18}\widetilde{x_n} = (17 - 4\sqrt{18})^{n+1}$$
 (5)

Where $n = 0, 1, 2, 3 \dots$

From equation (4) and (5), we obtain

$$\widetilde{y_n} = \frac{1}{2} \left[(17 + 4\sqrt{18})^{n+1} + (17 - 4\sqrt{18})^{n+1} \right] \tag{6}$$

and

$$\widetilde{x_n} = \frac{1}{2\sqrt{18}} \left[(17 + 4\sqrt{18})^{n+1} - (17 - 4\sqrt{18})^{n+1} \right]$$
(7)

Using the equations (6) and (7), the solutions of equation (2) is given by

$$U_{n+1} = X_{n+1} = \frac{1}{2\sqrt{18}} [(12\sqrt{18} + 51)(17 + 4\sqrt{18})^{n+1} - (12\sqrt{18} - 51)(17 - 4\sqrt{18})^{n+1}]$$

$$n = -1,0,1,2 \dots$$

$$Y_{n+1} = \frac{1}{2\sqrt{18}} \left[(51\sqrt{18} + 216)(17 + 4\sqrt{18})^{n+1} \right]$$

(51\sqrt{18} - 216)(17 - 4\sqrt{18})^{n+1}]
 $n = -1,0,1,2 \dots$

Numerical Examples

n	U_{n+1}	Y_{n+1}
-1	12	51
0	408	1731
1	7332	31155
2	249264	1057539

Observations:

- 1. Recurrence relations for X and Y are $X_{n+3} - 4X_{n+2} - 509X_{n+1} = 0$ and $Y_{n+3} - 4Y_{n+2} - 509Y_{n+1} = 0$
- 2. For all values of n, Y is even and Y is odd
- 3. For all values of n, X_{n+1} is divisible by 4 and Y_{n+1} is divisible by 3

Case (Ii):

When p = 12 the equation (1) leads to

$$Y^2 = 24X^2 + 12 \tag{8}$$

Let $(x_0, y_0) = (1,6)$ be the initial solution of (8).

To obtain the general solution of (8) consider the Pellian equation

$$Y^2 = 24X^2 + 1 \tag{9}$$

Let $(\widetilde{x_0}, \widetilde{y_0}) = (1,5)$ be a solution of (9)

Using Brahmagupta lemma the general solution $(\widetilde{x_n}, \widetilde{y_n})$ of equation (9) is given by

$$\widetilde{y_n} + \sqrt{24}\widetilde{x_n} = (5 + \sqrt{24})^{n+1} \tag{10}$$

Where n = 0, 1, 2, 3...

Since irrational roots occur in pairs

$$\widetilde{y_n} - \sqrt{24}\widetilde{x_n} = (5 - \sqrt{24})^{n+1} \tag{11}$$

Where $n = 0, 1, 2, 3 \dots$

From equation (10) and (11), we obtain

$$\widetilde{y_n} = \frac{1}{2} \left[(5 + \sqrt{24})^{n+1} + (5 - \sqrt{24})^{n+1} \right]$$
(12)

and

$$\widetilde{x_n} = \frac{1}{2\sqrt{18}} \left[(5 + \sqrt{24})^{n+1} + (5 - \sqrt{24})^{n+1} \right]$$
(13)

Using the equations (6) and (7), the solutions of equation (8) is given by

$$U_{n+1} = X_{n+1} = \frac{1}{2\sqrt{24}} [(\sqrt{24} + 6)(5 + \sqrt{24})^{n+1} - (\sqrt{24} - 6)(5 - \sqrt{24})^{n+1}] \quad n = -1, 0, 1, 2 \dots$$

$$Y_{n+1} = \frac{1}{\sqrt{24}} [(3\sqrt{24} + 12)(5 + \sqrt{24})^{n+1} + (3\sqrt{24} - 12)(5 - \sqrt{24})^{n+1}] \quad n = -1, 0, 1, 2 \dots$$

Numerical Examples

n	U_{n+1}	Y_{n+1}
-1	1	6
0	11	54
1	109	534
2	1079	5286

Observations:

- 1. Recurrence relations for X and Y are $X_{n+3} - 10X_{n+2} + X_{n+1} = 0 \qquad \text{and}$ $Y_{n+3} - 10Y_{n+2} + Y_{n+1} = 0$
- 2. For all values of n, X is odd and Y is even.
- 3. For all values of n, Y_{n+1} is divisible by 6.
- 4. $X_{n+3} + X_{n+1} \equiv 0 \pmod{10}$
- 5. $Y_{n+3} + Y_{n+1} \equiv 0 \pmod{10}$
- 6. $X_{n+3} + X_{n+2} + X_{n+1} \equiv 0 \pmod{11}$
- 7. $Y_{n+3} + Y_{n+2} + Y_{n+1} \equiv 0 \pmod{11}$

III. REFERENCES

- [1]. Dicdsen, L.E., History of theory of number, Vol.II, Chelsea Publishing Company, New York (1952).
- [2]. Smith, D.E., History of Mathematics, Vol.I and II, Dover Publications, Newyork (1953).
- [3]. W.Sierpinski, Pythagorean triangles, Dover publications, INC, New York, 2003.
- [4]. M.A.Gopalan V.Sangeetha and Manjusomanath, "Pythagorean triangle and Polygonal number", Cayley J.Math., 2013, Vol 2(2), 151-156.
- [5]. M.A.Gopalan and B.Sivakami, "Pythagorean triangle with hypotenuse minus (area/perimeter) as a square integer", Archimedes J.Math., 2012, Vol 2(2), 153-156.
- [6]. M. A. Gopalan , Vidhyalakshmi, E. Premalatha and R. Presenna, "Special Pythagorean triangle and Kepricker numb-digit dhuruva numbers", IRJMEIT, Aug, 2014, Vol 1(4), 29-33.
- [7]. P. Shanmuganandham, "A different approach on a Pythagorean Triangle which satisfies a(Hypotonuse-4a(area/perimeter) as a square integer", IJIET, Aug. 2016, Vol 6(2), 18-19.
- [8]. P. Thirunavukkarasu and S. Sriram, "Pythagorean Triangle with Area / Perimeter as quartic integer", International Journal of Engineering and Innovative Technology (IJEIT),vol.3(7),2014, pp.100-102.