A Different Approach on A Pythagorean Triangle which Satisfies

$$
p(\text { Hypotonuse })-4 p \frac{(\text { Area })}{(\text { Perimeter })}=\beta^{2}
$$

S. Sriram, P. Veeramallan
${ }^{1}$ P. G. \& Research Department of Mathematics, National College, Tiruchirappalli, Tamilnadu, India
${ }^{2}$ P. G. Assistant in Mathematics, GHSS, Perumangalam, Villupuram, Tamilnadu, India

Abstract

We obtain non-trivial values for the sides of the Pythagorean triangle such that p (Hypotonuse) $4 p \frac{(\text { Area })}{(\text { Perimeter })}=\beta^{2}$. A few interesting relations between the sides of the Pythagorean triangle are presented.

Keywords: Integral Solutions, Pythagorean Triangles

I. INTRODUCTION

One well known set of solutions of the Pythagorean equation $x^{2}+y^{2}=z^{2}$ are $x=$ $2 u v, y=u^{2}-v^{2}$ and $z=u^{2}+v^{2}$. Many mathematicians has been used this set of solutions to obtain the non-zero integral values for x, y and z [1-3]. As a new approach, in this paper we introduce another set of solutions $x=2 U+$ $1, y=2 U^{2}+2 U$ and $z=2 U^{2}+2 U+1$ for the equation $x^{2}+y^{2}=z^{2}$. By using this solution we obtain three non-zero integers x, y and z under certain relations satisfying the equation $x^{2}+$ $y^{2}=z^{2}$ [4-6]. In this communication, we present yet another interesting Pythagorean triangle where in each of which the ratio p (Hypotonuse) $4 p \frac{\text { (Area) }}{\text { (Perimeter) }}$ may be expressed as a perfect square.

II. METHODS AND MATERIAL

Taking $A>0$ to be the generators of the Pythagorean triangle ($\mathrm{x}, \mathrm{y}, \mathrm{z}$), the assumption that p (Hypotonuse) $-4 p \frac{(\text { Area })}{(\text { Perimeter })}=\beta^{2}$ leads to the

Pellian equation $Y^{2}=D X^{2}+p$ where $D=2 p$, not a perfect square and $U=X$.

For the clear understanding we consider the following two cases:
i) $\quad p=9$ (odd number) so that $D=18$
ii) $\quad p=12$ (even number) so that $D=24$

Case (i):

When $p=9$ the equation

$$
\begin{equation*}
Y^{2}=D X^{2}+p \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
Y^{2}=18 X^{2}+9 \tag{2}
\end{equation*}
$$

Let $\left(x_{0}, y_{0}\right)=(12,51)$ be the initial solution of (2).
Consider the Pellian

$$
\begin{equation*}
Y^{2}=18 X^{2}+1 \tag{3}
\end{equation*}
$$

Let $\left(\widetilde{x_{0}}, \widetilde{y_{0}}\right)=(4,17)$ be a solution of (3)

Using Brahmagupta lemma the general solution $\left(\widetilde{x_{n}}, \widetilde{y_{n}}\right)$ of equation (3) is given by

$$
\begin{equation*}
\left.\widetilde{y_{n}}+\sqrt{18} \widetilde{x_{n}}\right)=(17+4 \sqrt{18})^{n+1} \tag{4}
\end{equation*}
$$

Where $n=0,1,2,3 \ldots$
Since irrational roots occur in pairs

$$
\begin{equation*}
\left.\widetilde{y_{n}}-\sqrt{18} \widetilde{x_{n}}\right)=(17-4 \sqrt{18})^{n+1} \tag{5}
\end{equation*}
$$

Where $n=0,1,2,3 \ldots$
From equation (4) and (5), we obtain
$\widetilde{y_{n}}=\frac{1}{2}\left[(17+4 \sqrt{18})^{n+1}+(17-4 \sqrt{18})^{n+1}\right]$
and
$\widetilde{x_{n}}=\frac{1}{2 \sqrt{18}}\left[(17+4 \sqrt{18})^{n+1}-(17-4 \sqrt{18})^{n+1}\right.$
Using the equations (6) and (7), the solutions of equation (2) is given by
$U_{n+1}=X_{n+1}=\frac{1}{2 \sqrt{18}}[(12 \sqrt{18}+51)(17+$
$\left.4 \sqrt{18})^{n+1}-(12 \sqrt{18}-51)(17-4 \sqrt{18})^{n+1}\right]$
$n=-1,0,1,2 \ldots$
$Y_{n+1}=\frac{1}{2 \sqrt{18}}\left[(51 \sqrt{18}+216)(17+4 \sqrt{18})^{n+1}-\right.$
$\left.(51 \sqrt{18}-216)(17-4 \sqrt{18})^{n+1}\right]$
$n=-1,0,1,2 \ldots$

Numerical Examples

n	U_{n+1}	Y_{n+1}
-1	12	51
0	408	1731
1	7332	31155
2	249264	1057539

Observations:

1. Recurrence relations for X and Y are
$X_{n+3}-4 X_{n+2}-509 X_{n+1}=0 \quad$ and $Y_{n+3}-4 Y_{n+2}-509 Y_{n+1}=0$
2. For all values of n, Y is even and Y is odd
3. For all values of n, X_{n+1} is divisible by 4 and Y_{n+1} is divisible by 3

Case (Ii):

When $p=12$ the equation (1) leads to

$$
\begin{equation*}
Y^{2}=24 X^{2}+12 \tag{8}
\end{equation*}
$$

Let $\left(x_{0}, y_{0}\right)=(1,6)$ be the initial solution of (8).
To obtain the general solution of (8) consider the Pellian equation

$$
\begin{equation*}
Y^{2}=24 X^{2}+1 \tag{9}
\end{equation*}
$$

Let $\left(\widetilde{x_{0}}, \widetilde{y_{0}}\right)=(1,5)$ be a solution of (9)
Using Brahmagupta lemma the general solution $\left(\widetilde{x_{n}}, \widetilde{y_{n}}\right)$ of equation (9) is given by

$$
\begin{equation*}
\widetilde{y_{n}}+\sqrt{24} \widetilde{x_{n}}=(5+\sqrt{24})^{n+1} \tag{10}
\end{equation*}
$$

Where $n=0,1,2,3 \ldots$
Since irrational roots occur in pairs

$$
\begin{equation*}
\widetilde{y_{n}}-\sqrt{24} \widetilde{x_{n}}=(5-\sqrt{24})^{n+1} \tag{11}
\end{equation*}
$$

Where $n=0,1,2,3 \ldots$
From equation (10) and (11), we obtain

$$
\begin{equation*}
\widetilde{y_{n}}=\frac{1}{2}\left[(5+\sqrt{24})^{n+1}+(5-\sqrt{24})^{n+1}\right] \tag{12}
\end{equation*}
$$

and
$\widetilde{x_{n}}=\frac{1}{2 \sqrt{18}}\left[(5+\sqrt{24})^{n+1}+(5-\sqrt{24})^{n+1}\right]$
Using the equations (6) and (7), the solutions of equation (8) is given by
$U_{n+1}=X_{n+1}=\frac{1}{2 \sqrt{24}}\left[(\sqrt{24}+6)(5+\sqrt{24})^{n+1}-\right.$
$\left.(\sqrt{24}-6)(5-\sqrt{24})^{n+1}\right] \quad n=-1,0,1,2 \ldots$
$Y_{n+1}=\frac{1}{\sqrt{24}}\left[(3 \sqrt{24}+12)(5+\sqrt{24})^{n+1}+\right.$
$\left.(3 \sqrt{24}-12)(5-\sqrt{24})^{n+1}\right] \quad n=-1,0,1,2 \ldots$

Numerical Examples

n	U_{n+1}	Y_{n+1}
-1	1	6
0	11	54
1	109	534
2	1079	5286

Observations:

1. Recurrence relations for X and Y are

$$
X_{n+3}-10 X_{n+2}+X_{n+1}=0 \quad \text { and }
$$

$$
Y_{n+3}-10 Y_{n+2}+Y_{n+1}=0
$$

2. For all values of n, X is odd and Y is even.
3. For all values of n, Y_{n+1} is divisible by 6 .
4. $X_{n+3}+X_{n+1} \equiv 0(\bmod 10)$
5. $Y_{n+3}+Y_{n+1} \equiv 0(\bmod 10)$
6. $X_{n+3}+X_{n+2}+X_{n+1} \equiv 0(\bmod 11)$
7. $Y_{n+3}+Y_{n+2}+Y_{n+1} \equiv 0(\bmod 11)$

III. REFERENCES

[1]. Dicdsen, L.E., History of theory of number, Vol.II, Chelsea Publishing Company, New York (1952).
[2]. Smith, D.E., History of Mathematics, Vol.I and II, Dover Publications, Newyork (1953).
[3]. W.Sierpinski, Pythagorean triangles, Dover publications, INC, New York, 2003.
[4]. M.A.Gopalan V.Sangeetha and Manjusomanath, "Pythagorean triangle and Polygonal number", Cayley J.Math., 2013, Vol 2(2), 151-156.
[5]. M.A.Gopalan and B.Sivakami, "Pythagorean triangle with hypotenuse minus (area/perimeter) as a square integer", Archimedes J.Math., 2012, Vol 2(2), 153-156.
[6]. M. A. Gopalan , Vidhyalakshmi, E. Premalatha and R. Presenna, "Special Pythagorean triangle and Kepricker numb-digit dhuruva numbers", IRJMEIT, Aug, 2014, Vol 1(4), 29-33.
[7]. P. Shanmuganandham, " A different approach on a Pythagorean Triangle which satisfies a (Hypotonuse-4a(area/perimeter) as a square integer", IJIET, Aug. 2016, Vol 6(2), 18-19.
[8]. P. Thirunavukkarasu and S. Sriram, "Pythagorean Triangle with Area / Perimeter as quartic integer", International Journal of Engineering and Innovative Technology (IJEIT),vol.3(7),2014, pp.100-102.

